Relating Hydrology to Wetland Plant Community Distribution

Peter V. Caldwell¹, Michael J. Vepraskas², James D. Gregory², R. Wayne Skaggs², and Rodney L. Huffman² ¹USDA Forest Service, Raleigh, NC ²North Carolina State University, Raleigh, NC

WETLANDS IN A COMPLEX WORLD

Rationale

Wetland vegetation composition depends upon the restored hydroperiod

(De Steven and Lowrance, 2011)

 Matching vegetation to restored hydrology remains a challenge

(Zedler, 2000)

"I have a restoration site with an expected hydroperiod of X...what should I plant there"?

Or

"I want a community of Y at a restoration site...what hydroperiod do I need to design into the restoration?"

Selected wetland communities

	Pond Pine Woodland	Nonriverine Swamp Forest	High Pocosin	Bay Forest
Dominant Species	Pond Pine	Cypress, Swamp Tupelo	Pond Pine, Bays	Bays
Height (m)	18	30	7.6	10
Basal Area (m² ha ⁻¹)	12.6	22.3	1.9	7.9
Available P (mg dm ⁻³)	11.9	17.8	9.2	12.1
Organic Layer (cm)	<40	20 - 80	>80	>80

Dimick et al., Castanaea, 2010

Hydrology?

Pond Pine	Nonriverine	High	Bay	
Woodland	Swamp Forest	Pocosin	Forest	
Temporarily flooded or saturated	Seasonally or frequently saturated or shallowly flooded	Seaso floode satura	onally ed or ated	

Schafale and Weakley, 1990

Objective

Compare and quantify the long-term hydrology associated with four plant communities found in Carolina Bays.

- Can hydrology explain where communities are established within the bays?
- Provide quantitative data describing the hydrology of the plant communities

Site Locations

Charlie Long Millpond

Plant community plots

Bay	Pond Pine Woodland	Nonriverine Swamp Forest	High Pocosin	Bay Forest
Charlie Long	3		1	
Causeway	2		2	
Tatum Millpond	1	3	1	2
Total	6	3	4	2

Collect site observations

Develop and calibrate DRAINMOD models

> Input 40 year historical climate data

> > Compare hydrology in each plant community

Caldwell et al., Wetlands 2007

40 year water balances

Groundwater Inflow

Daily water table depth distributions

Hydroperiods

Community	Plots	Median water table depth (cm)	Median hydroperiod (d yr⁻¹)	Grα (α=α	oup 0.05)
Pond Pine Woodland	6	-8.0	91	а	
Nonriverine Swamp Forest	3	8.7	317		b
High Pocosin	4	2.2	243	а	b
Bay Forest	2	7.5	307	а	b

Duration of Continuous Saturation

Community	Sites Duration Minimur		Duration 50% of years
	n	days	days
Pond Pine Woodland	6	28 – 91 (66)	86 – 242 (162)
Nonriverine Swamp Forest	3	93 – 112 (104)	242 – 242 (242)
High Pocosin	4	54 – 166 (113)	122 – 242 (212)
Bay Forest	2	91-106 (98)	242-242 (242)

Growing Season: 242 days, 5% = 12 days

- Similar microtopography across all plant communities
- Local high elevations occupied by trees → wells placed in local low elevations
- Ponding does not indicate entire area is flooded

Other environmental factors

	Nonriverine Swamp Forest	High Pocosin	Bay Forest
Available soil phosphorus	high	low	low
Disturbance (fire, logging, etc)	no	yes	no

Design Criteria for Restoration of Selected Plant Communities

Organic layer thickness (cm)	Hydroperiod (d yr⁻¹)	Recommended community
<40	90	Pond Pine Woodland
40 to 80	310	Nonriverine Swamp Forest
>80	310	Bay Forest

Take away points

- Results support the notion that hydrology is a key driver in wetland vegetative community distribution
- Hydrologic models cost effectively estimate long term plant-hydrology relationships
- Methodology can be further refined and used to quantify the hydrology of other wetland communities.

Thank you!

Peter Caldwell pcaldwello2@fs.fed.us 919.515.1560 www.forestthreats.org

Funding for this research was provided by the North Carolina Department of Transportation

